Assignment 12

1. Consider the function

$$
f(x)=\frac{1}{2} x+x^{2} \sin \frac{1}{x}, \quad x \neq 0
$$

and set $f(0)=0$. Show that f is differentiable at 0 with $f^{\prime}(0)=1 / 2$ but it has no local inverse at 0 . Does it contradict the inverse function theorem?
2. Find the partial derivatives of the inverse function at the designated points:
(a) $F(u, v)=\left(u^{2}+5 u v+v^{2}, u^{2}-v^{2}\right)$, at $(3,0)$.
(b) $G(x, y, z)=\left(x y+z, z \sin \pi x, 6 x y^{2}-5\right)$, at $(1,0,-2)$.
3. (a) Consider the function

$$
h(x, y)=\left(x-y^{2}\right)\left(x-3 y^{2}\right), \quad(x, y) \in \mathbb{R}^{2}
$$

Show that the set $\{(x, y): h(x, y)=0\}$ cannot be expressed as a local graph of a C^{1}-function over the x or y-axis near the origin.
(b) Consider

$$
\varphi(x, y)=\left(x-y^{2}\right)\left(-x+3 y^{2}\right), \quad(x, y) \in \mathbb{R}^{2}
$$

Show that the set $\{(x, y): \varphi(x, y)=0\}$ can be expressed as the local graphs of two C^{1}-functions over the y-axis near the origin in two different ways.
4. (Revised) Consider the system

$$
2 x^{2}+y^{2}-z^{2}+w^{2}=4, \quad x y w-x y z=1
$$

Show that x and w can be expressed as functions of y, z, that is, $x=f(y, z), w=g(y, z)$ near $(x, y, z, w)=(1,1,0,1)$ and find the partial derivatives of f and g at this point.
5. Consider the system

$$
x^{2}-y^{2}-u^{3}+v^{2}+4=0, \quad 2 x y+y^{2}-2 u^{2}+3 v^{4}+8=0
$$

at $(2,-1,2,1)$. Show that there exist an open set U containing $(2,-1)$ and an open set W containing $(2,1)$ and function $F=\left(f_{1}, f_{2}\right)$ from U to $W, F(2,-1)=(2,1)$, such that

$$
x^{2}-y^{2}-f_{1}(x, y)^{3}+f_{2}(x, y)^{2}+4=0, \quad 2 x y+y^{2}-2 f_{1}(x, y)^{2}+3 f_{2}(x, y)^{4}+8=0
$$

hold. Find $\partial u / \partial x$ and $\partial^{2} u / \partial x^{2}$ in terms of x, y, u and v.

In the following we are concerned with the inverse function theorem in infinite dimensional Banach spaces. On $C^{k}[a, b]$ the norm

$$
\|f\|_{C^{k}}=\|f\|_{\infty}+\cdots+\left\|f^{(k)}\right\|_{\infty}
$$

is given. It is easily seen that it makes $C^{k}[a, b]$ a Banach space. The first two problems are about the norm of a linear operator.
6. Optional. A linear operator (map) $T: X \rightarrow Y$ between two normed spaces X, Y is bounded if there exists some constant M such that

$$
\|T x\|_{Y} \leq M\|x\|_{X}, \quad \forall x \in X
$$

(a) Show that

$$
\sup \left\{\frac{\|T x\|_{Y}}{\|x\|_{X}}, x \neq 0 \in X\right\}=\inf \left\{M:\|T x\|_{Y} \leq M\|x\|_{X}\right\}
$$

(b)

$$
\|T\|_{o p}=\sup \left\{\frac{\|T x\|_{Y}}{\|x\|_{X}}, x \neq 0 \in X\right\}
$$

is norm on $L(X, Y)$, the vector space of all bounded, linear operators from X to Y. It is called the operator of T.
7. Optional. Consider the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ define on \mathbb{R}^{n}. Show that the operator norms of the linear operator associated to the $n \times n$-matrix $\left\{a_{i j}\right\}$ with respect to $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are given respectively by

$$
\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|, \quad \text { and } \max \left\{\left|\lambda_{1}\right|, \cdots,\left|\lambda_{n}\right|\right\}
$$

Recall that $\|x\|_{1}=\sum_{j}\left|x_{j}\right|$ and $\|x\|_{2}=\left(\sum_{j} x_{j}^{2}\right)^{1 / 2}$. This problem is related to Lemma 4.2.
8. Optional. Let $F: U \subset X \rightarrow Y$ where U is open set in X and X, Y are normed spaces. F is called differentiable at $x \in U$ if there exists a bounded linear operator $T: X \rightarrow Y$ such that

$$
\lim _{\varepsilon \rightarrow 0}\left\|\frac{F(x+\varepsilon z)-F(x)}{\varepsilon}-T z\right\|_{Y}=0, \quad \forall z \in X
$$

This operator T is called the derivative of F at x and is denoted by $F^{\prime}(x) . F$ is in $C^{1}(U)$ if it is differentiable at every point of U and $(x, z) \mapsto F^{\prime}(x) z$ is continuous from $U \times X$ to Y. Find the derivatives in the following cases and verify that these maps are C^{1}.
(a)

$$
F(y)=y^{\prime}(x)-\cos y(x), \quad X=\left\{y \in C^{1}[0,1]: y(0)=0\right\}, \quad Y=C[0,1]
$$

(b)

$$
G(y)=y^{\prime \prime}(x)+y^{3}(x)-1, \quad X=\left\{y \in C^{2}[0,1]: y(0)=y^{\prime}(0)=0\right\}, \quad Y=C[0,1]
$$

(c)

$$
I(y)=\int_{-\pi}^{\pi}\left(y^{\prime 2}(x)+e^{y(x)}\right) d x, \quad X=C[-\pi, \pi], Y=\mathbb{R}
$$

9. Optional. A bounded linear operator from X to Y is called invertible if its inverse exists and is a bounded linear operator. Show that the inverse function theorem, Theorem 4.1, still holds when F is a C^{1}-map from $U \subset X$ to Y where both X and Y are Banach spaces. If too difficult, look up books on nonlinear functional analysis, for instance, chapter 4 in Deimling's "Nonlinear Functional Analysis" or chapter 3 in Berger's "Nonlinearity and Functional Analysis".
10. Optional. Consider the boundary value problem for the second order equation

$$
y^{\prime \prime}+a \sin y=f(x), \quad y(0)=y(\pi)=0, x \in[0, \pi]
$$

where $a \in(0,1)$ is fixed.
(a) Show that $F(y)=y^{\prime \prime}+a \sin y$ is C^{1} from $\left\{f \in C^{2}[0, \pi]: y(0)=y(\pi)=0\right\}$ to $C[0, \pi]$.
(b) Show that its derivative at the function $y \equiv 0$ is given by $F^{\prime}(0) z=z^{\prime \prime}+a z$ and it is invertible.
(c) Apply the inverse function theorem to show that

$$
y^{\prime \prime}+a \sin y=f(x), \quad y(0)=y(\pi)=0, x \in[0, \pi]
$$

is solvable for small f.

